Update on track reconstuction efficiency in jets Simon Sabik, Pierre Savard University of Toronto

- Tuning the embedded MC track
- Hit merging
- Hit efficiency

Results (for low p_t tracks)

Plan

Tuning the embedded MC track

- Embedded tracks must be tuned to emulate data tracks in jets
- Distribution of number of axial and stereo hits attached to track:
- Hit merging: hit merge distance 20ns
- Hit efficiency:
- ⇒ Numerator: measure hit efficiency in cosmics
- SL1: 22.9/24 SL2: 23.1/24 SL3: 23/24 SL4: 23.3/24
- SL5: 23.4/24 SL6: 23.4/24 SL7: 23.3/24 SL8: 23.3/24
- fake track: $\sim 99\%$ for all super layers ⇒ Denominator: Hit efficiency while reconstructing a
- at hitD > 0.775cm⇒ Make cut a function of drift distance: apply cut only

- For both data and MC, use track in 0.4 cone from highest p_t vertex
- Distribution of the track hit residual (smearing scale factor 0.8)
- Distribution of hit width (Penn drift model)

Definition of efficiency

Denominator: the embedded track

- Charged pions that don't have a decay (or interaction) vertex
- Random P_t from 0.5 to 2 GeV/c (will do higher p_T soon)
- Flat random angular distance from jet core between 0 to 0.7
- COT fiducial (|cotz| < 149cm)

reconstructed tracks Numerator: BOTH criteria satisfied to compare OBSP helix and

- At least 10 more hit match than any other track
- AND $\Delta d0 < 0.4$, $\Delta \Phi < 0.013$ and $\Delta curvature < 0.00004$

- Use newer tracking software version

Use variable that defines number of immediately near hits

- Refine the track reconstruction criteria (error dependent criteria)
- Try hit efficiency, hit merging and Penn Drift Model for MC
- Compare track multiplicity in MC and data